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Power Spectrum Parameter Estimation 
M. JOSEPH LEVIN, MEMBER, IEEE 

Abstract—The power spectrum of a zero-mean stationary Gaus- 
sian random process is assumed to be known except for one or 
more parameters which are to be estimated from an observation 
of the process during a finite time interval. The approximation is 
introduced that the coefficients of the Fourier series expansion of 
a realization of long-time duration are uncorrelated. Based on this 
approximation maximum likelihood estimates are derived and 
fundamental limits on the variances attainable are found by evalua- 
tion of the Cramer-Rao lower bound. Parameters specifically 
considered are amplitude, center frequency, and frequency scale 
factor. Also considered is ripple frequency which refers to the 
cosine factor in the spectrum produced by the addition of a delayed 
replica of the random process. The dual problem of estimating 
parameters of the time-varying power level of a nonstationary 
band-limited white noise process is examined. 

I. INTRODUCTION 

THE PROBLEM of estimating parameters of the 
power spectrum of a stationary random process 
from a record of limited duration arises in a variety 

of applications. For example, radio astronomers have 
mapped the structure of our galaxy by measuring the 
Doppler shift of the hydrogen line in various directions 
in the galactic plane [1]. In radar investigations of the 
ionosphere, the positive ion temperature has been deduced 
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from the spectral width of the backscattered signals [2]. 
Further examples pertaining to radar astronomy and 
seismology are described in Sections VIII and X of this 
paper. Some of the methods of statistical estimation 
theory are applied here to these problems. With the 
assumption that the process is Gaussian and the intro- 
duction of certain approximations valid for a long obser- 
vation time, an expression is given for the likelihood 
function of the parameters. From this expression, maxi- 
mum likelihood estimates can be determined although 
they cannot, in general, be stated explicitly. Funda- 
mental limits on the variance attainable by these or any 
other estimates are provided by evaluation of the Cramer- 
Rao lower bound. Specific results are obtained for the 
parameters of amplitude, center frequency, frequency 
scale factor, and ripple frequency. It is shown that 
analogous results apply to the estimation of parameters 
governing the time variation of the power level of a 
nonstationary band-limited white noise process such as 
would be obtained from the reflection of a narrow radar 
pulse from a diffuse cloud of scatterers. 

Many authors have examined the problem of measuring 
the overall shape of a power spectrum [3]-[5]. However, 
for situations like the above, in which the spectrum is 
assumed to be known except for one or more parameters, 
only a few treatments have appeared in the literature. 
Kelly, Lyons, and Root [6] and other authors analyzed 
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Levin: Power Spectrum Parameters 101 

the radiometer, which is a device for measurement of 
spectral amplitude. Svverling [7] and Mullen [8] described 
methods for estimating frequency scale factor and center 
frequency .which, require that the parameter be in the 
vicinity of some nominal value'and that the amplitude 
of the power spectrum be known or stabilized by an auto- 
matic gain control. They obtained expressions for the 
error variances which for power spectra symmetric about 
a center frequency are equivalent to (37) and (41) be- 
low. Bogert, Healy, and Tukey [9] discussed a method 
for the measurement of the time delay of an "echo" 
of the random process, but presented no theoretical 
evaluation. 

In the statistical literature, there are some specialized 
results dealing with parameters of moving average and 
autoregressive discrete tune series. The only treatment 
which applies to a general class of parameters is the 
work of Whittle [10]—[12] which has not received atten- 
tion proportional to its importance. He treated hypothesis 
testing for a discrete Gaussian time series with unknown 
power spectrum parameters by approximating the co- 
variance matrix of the time series with one which is 
circular (periodic). The hypothesis-testing framework 
places the amplitude parameter in a special category 
and leads to the conclusion that its maximum likelihood 
estimate is asymptotically uncorrelated with that of the 
other parameters. Here (in Section IV) a different result 
is obtained which has been verified by other means. 
Otherwise, the application of our methods to discrete 
time series produces results consistent with Whittle's. 

II. MAXIMUM LIKELIHOOD ESTIMATES AND THE 

CRAMER-RAO LOWER BOUND 

Some general results of statistical estimation theory [13] 
are presented in this section. Consider an JV-dimensional 
vector random variable £ with probability density g(x; a) 
depending on a parameter a with true value a0- For an 
observation of £, the natural logarithm of the likelihood 
of a is defined as 

A(fc a) = log gfc; a) 

The maximum likelihood (ML) estimate & is the value of 
a which maximizes A(£; a). It can sometimes be found 
explicitly as the root of the likelihood equation 

fam«) = o (i) 

but usually a linearization in the vicinity of a0 or a 
method of successive approximations is required. 

The Cramer-Rao lower bound states that under general 
regularity conditions for any estimate a. 

where 

^   [1 + db/da0f 
var«. >   _EK>{l.ao) 

b = Ea. — a0 

(2) 

is the bias of a,. An alternate expression for the denomi- 
nator of (2) is obtained from the identity 

-£A"(fca0) =E[A'(Z;ao)]2 (3) 

In this paper, a prime always denotes differentiation with 
respect to a and 

A'(fc«o) = ^A(*;a) 

A"(*;ao) = ^A(*;a) 

An unbiased estimate whose variance satisfies (2) with 
the equals sign is said to be efficient. However, efficient 
estimates exist only in certain cases. ML estimates are 
not necessarily unbiased or efficient. However, ML esti- 
mates based on iV independent samples of a random 
variable have certain optimal properties as N —> <». 
Grenander [14] extended these results to ML estimates 
based on a realization of a random process of duration 
T. He established under general conditions that as T —» »f 

d converges in probability to an and is asymptotically 
efficient. This implies that V— EA"(£;cto)(& — «o) con- 
verges in distribution to a distribution with mean zero 
and variance one. In addition, this limiting distribution 
is usually Gaussian. 

Frequently the bias of an estimate under considera- 
tion cannot be established, so (2) is not informative. 
However, the Cramer-Rao lower bound can still be in- 
terpreted in terms of the "sensitivity" introduced by 
Kelly, Lyons, and Root [6]. They consider any statistic 
a, which is a measure of <x0 in the sense that its expecta- 
tion is a mono tonic function of a0 and define 

sensitivity = 
dEa,/da0 

standard deviation of a, for a = ao 

The reciprocal of the sensitivity is just that small change 
in «o required to change the mean value of a, by one 
standard deviation. It is seen that (2) can now be written 

(   A . Y > - 
Vsensitivity/   ~~ — £A"(*;*o) 

(4) 

Consider now the general class of estimates a* ob- 
tained by maximizing over a some function r(£; a) 
which depends on £ and a (but not, of course, on a0) 
and has the further property 

ET\k; «o) = o (5) 

The dispersion of the sampling errors can be character- 
ized by the quantity 

_ g[r'«;*o)l' 
ö(a)-[ßr"«;a0)]' 

This quantity can be further interpreted when r(£; a) is 
sufficiently regular so that in the vicinity of the true 
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parameter value a0 it can be approximated by the first 
three terms of the Taylor series expansion 

T{t, a) & 1% aQ) + (« - «o)r,a; a0) 

+ ^2^r''(*;«0) 

The maximum value of r(£; a) over a occurs where 

r'(?;a) = 0 

so from (6) 

V*     - «., 
~ r"(*;«o) 

(6) 

(7) 

(8) 

Then the distribution of the sampling error, a* — aQf 

is approximately the same as that of the expression (8). 
If the further approximation is made that r"(£; a0) is a 
constant or that its random components are of a smaller 
order than those of the numerator of (8), then the random 
fluctuations of T'(Z; a0) about zero may be thought of 
as a linear noise term displacing the peak of the parabolic 
approximation to T(^; a) and 

S(a") (9) 

It has been shown by Godambe [15] that if S(a*) is 
taken as a measure of the dispersion of the estimate a*, 
without necessarily referring to the particular interpre- 
tation mentioned above, then under general regularity 
conditions S(a*) is minimized when r(£; a) = A(£; a) 
and a* = Si. This minimum value is, with (3), 

1 _ E[A'(Z;<*Q)]
2
 _ _ 

^-[tfA'^ao)]2- -£A"(*;«o) 
(10) 

This same quantity appears in the Cramer-Rao lower 
bound (2), but the present result holds with the equals 
sign for any regular estimate, biased or not. 

III. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES FOR 

POWER SPECTRUM PARAMETERS 

The analysis is based on the following assumptions: 

1) The random process is stationary, Gaussian, and 
zero mean with a double-sided power spectrum P(/; a) 
which is a known function of the parameter a whose 
value is to be estimated. (If the process consists of a 
random signal plus an independent noise, then P(j; a) is 
the sum of the two individual spectra.) 

2) A particular realization v(t) of the process is ob- 
served for 0 < t < T. 

3) The true value of a is denoted by a0 and the actual 
power spectrum is $(/) = P(f; a0). a0 is assumed to lie 
within a known finite interval amin < a0 < am«. 

4) For any a within this interval, only values of P(f; a) 
within some fixed finite range 0 < /i < |/| < » depend 
on a. Since /i and /2 may be anywhere outside of the 
range of dependence, for convenience we take /i = Ni/T 
and U = N2/T where JV\ and iV2 are integers. (This 
assumption means that P(j\ a) has some constant shape 
outside of /, < |/| < /2. The assumption /2 <  °° allows 

a finite-dimensional formulation of the problem and is 
meaningful in the usual practical situation where fre- 
quencies above some finite limit are not observable. The 
assumption /x > 0 is only for the convenience of elimi- 
nating zero frequency which enters unsymmetrically 
into the analysis.) 

5) For all / and all a such that amia < a < am„ the func- 
tions P(/; a), dP(f; a)/df, dP{j; a)/da, and d2P(f; a)/df da 
are bounded and continuous. Also P(f; a) is bounded away 
from zero for jx - (/2 - jx) < f < ft + (/2 - /,). 

In dealing with statistical inference for random proc- 
esses, a basic problem is to choose a set of "observable 
coordinates"1 which represent the process and whose 
probability distribution is tractable. In this paper, the 
observable coordinates are taken as the Fourier coefficients 

1 f v{t)e (it 

where /0 = 1/T. This is plausible since under general 
conditions, for almost every realization, v(t) can be repre- 
sented by the limit in the mean of its Fourier series 
expansion [16]. The real and imaginary parts of the yn 

have a multivariate Gaussian distribution and the likeli- 
hood function depends on the covariance matrix of the 
entire set of coefficients which is too complicated to be 
useful. We now observe [16], [17] that with the above 
definition 

lim Eynym 
T—co 

mn/T)   n = m 

[0 n 7* m 
(11) 

where n->ooasjP->ooso that n/T remains constant 
and ym is the complex conjugate of ym. It can be shown 
with the above assumptions that this convergence goes 
uniformly as log T/T. The approximation is now intro- 
duced that for large but finite T, 

Eynym = 
Wn/T)   n = m 

[0 n ?£ m 
(12) 

The Karhunen-Loeve expansion2 which is frequently 
employed in the analysis of random processes is not well 
adapted to spectral parameter estimation problems since 
it is in terms of an uncorrelated set of eigenfunctions 
which, except in special cases, change in a complicated 
way as the parameters vary. However, if and only if the 
covariance function of the random process is periodic 
with period T then the eigenfunctions become complex 
exponentials, the eigenvalues are values of the power 
spectrum spaced at intervals l/T, and the coefficients of 
the Karhunen-Loeve expansion are uncorrelatedx [16]. 
Therefore, the approximation (12) is equivalent to ap- 
proximating the covariance function of the process by 
one which is extended periodically. 

The likelihood function of the parameter a is now 

1 Grenander [14], pp. 207-209. 
2 IbicT., pp. 199-200; Davenport and Root, op. cit. [17], pp. 

96-101. 
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obtained by substituting the observed values of the 
Fourier coefficients into the complex Gaussian prob- 
ability density [18] which with (12), is 

n feg TrP(nf0; a) 
exp [-JJ-1 

L    P(n/0;a)J 

and depends upon v(t) only through the "periodogram" 
|7„|2. The approximate ML estimate a* is found by 
maximizing the approximate log likelihood 

N, r 
r(t;«)= - £ 

n-Nt   L 
log 7rP(n/0; a) + M'       1 

P(n/0;a)J (13) 

If P(f; a) is a slowly varying function, then the summa- 
tion (13) can be approximated by an integral. The indi- 
vidual |yn|

2 need not be measured since their values can 
be smoothed and replaced in this integral by a continuous 
function <!>*(/) which is equivalent to an approximately 
unbiased overall spectral estimate such as given by the 

lackman-Tukey method [41 or by a power spectrum 
analyzer. For the integral to be a good approximation, 
all the |Y„|

2
 must be effectively included and the resolution 

must be sufficient so that tjie detailed structure of the 
spectrum is not obscured. Then 

r(r;«) -r/;[iog.P(/;a)+^]d/ (14) 

The accuracy of these estimates can be characterized 
in terms of the Cram6r-Rao lower bound by approxi- 
mating #A"(Y; «O) with ET"(y; a0). We have 

r'(Y;«) = -£r»^ 3/(n/o;«)1 
[nfQ; a)   J (15) 

LP(n/0;a)   '       P"(n/, 

where P'(nf0;a) = (d/da)P(nf0;a). It is noted that 
ET'(y)a0) = 0, satisfying (5). A second differentiation 
and the substitution of (3) give 

-1 Jfl  LP(/;«O) J df (16) 

How good is this approximate analysis? Although 
similar approximations have been employed by Bryn [19], 
Good [20], Freiberger [21], and others, as well as by 
Whittle, a quantitative justification has not been given. 
We have been able to establish by somewhat involved 
arguments [22] (whose length discourages inclusion here) 
that with assumptions l)-5) above, the approximate ML 
estimates are as good as the exact ML estimates in the 
sense that 

It can also be shown that 

\imET',',{y>ao) = 1 
r_„ EA"{y; «o) 

(17) 

(18) 

so (16) furnishes a convenient asymptotic approximation 

for evaluating the Cram6r-Rao lower bound. In fact (17) 
and (18) converge at least as rapidly as (log T)4 T. 
Experiences of other investigators suggest that good 
results are obtained for modest values of T, but a nu- 
merical guide is not yet available. 

The step leading from (8) to (9) can also be justified 
so this, together with (10), (16), (17), and (18), enables 
us to state the basic conclusion that for large T 

vara* lÄ l_P(n/„; <*,) J / 

and these expressions are also asymptotic values for the 
Cram6r-Rao lower bound. 

IV. JOINT ESTIMATES 

For a set of M unknown parameters a{, denoted by 
the vector a, joint ML estimates are found by maximizing 
A(£; a) over a. There is a corresponding extension of the 
Crame>-Rao lower bound for any set of joint unbiased 
estimates a.. The covariance matrix, denoted by [cov (a.)], 
has elements 

COVa.i,«., = E[aei - Eati][aei - Eati) 

Let [£] be the matrix with elements 

£,, = - E A«; «) da,da; 

Then the matrix 

[cov («.)] - [£]-' 

is positive semidefinite. This implies that 

varaei- > l/£,, 

for i = 1, 2, • • • , M. Analogous results can be 
out for the sensitivity and the spread. 

For the power spectrum parameter estimation prob- 
lem we find, corresponding to (16), 

rf'dP(Ua)dP(f;a)\ 
dati da,- 

2./ = T r 'H 

A case which is important in practical applications is 
that in which the amplitude level A of the spectrum is 
one of the unknown parameters, so that the spectrum 
has the form AP(f;a). Frequently A is a nuisance param- 
eter whose value is not required. This often occurs in 
electronic equipment where the absolute value of the 
gain is difficult to calibrate. For a fixed value of a (see 
Section V), 

A*   m 
1 hS 

T{U-U) ^P(n1o;a) 
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Substituting this expression back into T(A, a) gives the This is an unbiased estimate and the variance is found 
log likelihood in terms of a alone. From this it can be to be exactly 
shown that a* can be obtained by maximizing over a . 

r(A*,a)=-{E logxP(«/„;a) A°       m    w 

^ * Therefore, as (/2 — /0 approaches mfinity the variance 
L T(4       4 r V —Jlall—ll f   + approaches zero for any fixed T. This result would be 
+ T(J2 - U) log L 2^ p(n/o. a) JJ + constant expected from the well-known singularity of this situa- 

f rr. tion [23]. 
« — T\ I    log wP(f; a) df A second special case occurs when AS(f)  <K N0 for 

^ fx all f. A* can be approximated by setting 

+ (U ~ U) log \j j'% j^ d/JJ + constant AS(nf0) + N0 & N0 

(22) in the denominator of (25) so 

without the necessity of determining A*. .     ,,    , ^ S(nf0) r,n/nj   *r       \   \*~\     foc* 
The effect of the lack of knowledge of A is placed in        L lT'    ; ~ ~   N2

0   |_^n'0' + iV°      ^«1 J     ^ 
evidence by evaluating the approximation to the co- . 
variance matrix of a* and A*. The element corresponding SettmS <29) e(lual to zero 8lves 

to var a* is 

wa* wfr f te^T* A* «i-—  (30) 
I  ^. LP(/; «O) J /   s\f) df 

var a 

-**nicm'Tr - This estimate is also unbiased and 

(31) When this is compared with (19) it is seen that the lack var A* ^ Nl  
of knowledge of A increases var a* unless the second ^o              /•'• 
integral in (23) is zero. Y J,,   [A°b{m df 

V. ESTIMATION OF SPECTRAL AMPLITUDE The estimates (27) and (30) are both linear functional 
_,                                              j ,   , of $*(/) and can be obtained as linear functions of the 
The power spectrum is assumed to be .     .   ,.       ,.                .      ,.                            . 

^          r outputs of suitable radiometers. A radiometer consists of 
P(j- A) = AS(f) + N0 a filter with transfer function H(f) followed by a square 

law detector and integrator. To evaluate the estimate 
where S(f) and N0 are known and the parameter A is to (27) it ig required that \H(f)\* = 1/s(f) while for (30)j 

be estimated. Then from (13) |#(/)|* = Ä(/)   The variances (28) and (31) agree with 

'. ■Itfr; A) - -   E |logT[ilS(n/o) + #o 
known radiometer formulas. 

"■*■ v VI. ESTIMATION OF CENTER FREQUENCY 
J L.   .2 

J_ utnl  \       C24>)        In this case, the power spectrum has the form 
yy + [AS(nU) + No' < 

P(1; /.) = P(j -U)  / > o 

and 

N» N% |       |2 
r'fv ^ -  -   V S(n1o)\A8(nf0) + iVo - iTnl2] ,25) 

[A5(nW + No) r(r; fJ = £ log ^p(n/o _ w _    £ _J* 

From (19) 
n-AT, «-AT, P(n/0   —   /e) 

var 

Let us further assume in this section that 

*(/i) = *(/2) = *o (33) 

A general explicit solution for A* is not known. How- for all allowable /e so that $(/) has the form indicated in 
ever, there are two significant special cases. The first is Fig. 1. Then the first integral in (32) is independent of 
for N0 = 0. Then setting T'(-f', A) = 0, we obtain /0 and /c* is obtained by minimizing over fe 

A/„"3d/      (27) Lw\)di (34) 
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Fig. 1.  The assumed spectral shape for the estimation of Doppler     Fig. 2.  The assumed spectral shape for the estimation of frequency 
shift. scale factor. 

"M 

This can be thought of as a "cross-correlation" between 
4>*(/) and the reciprocal of P(f — fc). Knowledge of the 
amplitude level of the spectrum is not required. 

On the other hand if 

P(1 ~ U) = *o + p(1 -1c)   / > 0 (35) 

where |p(/ — /e)| <C <P0 for all /, then j* is found approxi- 
mately by maximizing 

r **(/)p(/ - u) di 
Var j* is now evaluated from (19). For / > 0, 

(36) 

P>(/ - /e)« _ *m 

T\:v-f/^i^ w 
and (19) becomes 

var/„* « 

The features of the spectrum which make possible the 
estimation of fe are measured in a sense by the integral 
in (37). The integrand is non-negative at all frequencies 
and is large where <£(/) is changing rapidly. From (23) it 
is found that when (33) holds, the lack of knowledge of 
the spectral amplitude does not increase the approxi- 
mation to var /,*. 

VII. ESTIMATION OP FREQUENCY SCALE FACTOR 

(SPECTRAL WIDTH) 

The power spectrum is assumed to be 

P(/J h)    -   P[h(j   -   /<)]       /   >   0 

where je is a known center frequency and P[h{j — /c)] is 
known except for the frequency scale factor h which is 
to be estimated. (Note that the Doppler effect actually 
is a change of scale factor with /e = 0 and the Doppler 
shift is an approximation valid when the width of the 
power spectrum is small compared with its center fre- 
quency.) h* is obtained by maximizing 

r(T; h) fe - T [£' log rP[h(j - /.)] dj 

,    fft     **<f)df   I 
+ Jfl   P[h(j - /e)]J 

Now assume (33) holds for all allowable h so that <P(/) 

has the form indicated in Fig. 2. Then the evaluation of 
It can be simplified by writing 

PM-L)] - *o{i+p[Ä(/-/.)]) 

By a simple transformation of variables 

(39) 

r(Y; h) 

where 

-r[f-i: **<f) 
P[h(f - L)] 

df + constant 

(40) 

K =   f " log T[1 + P(1 ~ 1c)) dj 

var h* 

The maximization of (40) to determine h* is seen to 
depend upon the knowledge of the spectral amplitude. 
If it is unknown then the method of Section IV can be 
used. 

The Cramer-Rao lower bound (19) is found to be 

In comparison with (37), the integrand in (41) has an 
additional factor (/ — /c)

2 which emphasizes the spectral 
variations by the square of their distances from /„. Also 
in contrast to the estimation of /„, an evaluation of (23) 
for the present case shows that when the spectral ampli- 
tude is unknown, var h* is, in general, increased. 

VIII. ESTIMATION OF RIPPLE FREQUENCTV4 

A problem which arises in seismology and other fields 
[9] is that for which 

v{t) = A[u{t) + au(t - T)] 

where u(t) is a zero-mean stationary Gaussian random 
process with known power spectrum &(/), A and a are 
unknown amplitude factors, and r is a time delay to be 
estimated. Then 

P(1; A,a,r) = AS(f)[l + 2a cos 2TT/T + a2]      (42) 

and the addition of the "echo" a u(t — r) produces a 
cosine ripple of frequency r in the power spectrum. It 
can be shown that T* is obtained by minimizing over 
r and a 

= - T[IX + h (38) 
T(y;A\a, r) 

Jfx S(f)[] + 2a cos 2TT/T -f a2] dj   (43) 
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For small a this is equivalent to maximizing over r 

S(f) 
COS 2x/r dj 

which amounts to "whitening" $*(/) and finding the 
peak of the cosine transform. For \a\ <5C 1 and f2 )$> l/|r| 
it is found that 

var r* <r£aV<n-fi (44) 

IX. A DUAL PROBLEM 

A problem which is dual in a certain sense to that 
stated in Section III is now examined. Consider a zero- 
mean nonstationary Gaussian random process y(t) with 
a time-varying covariance function 

E[y(t)y{t + T)) =R(t;ß)8(r) 

i.e., y(t) is a white noise process with a power level R(t; ß) 
which is a function of time and of a parameter ß. Suppose 
R{t) ß) is known except for ß which is to be estimated. 
The following assumptions on R{t) ß) are analogous to 
those of Section III regarding P(/; a) with time and fre- 
quency interchanged: Only a finite frequency range of 
the y(t) process can be observed so that, in effect, it has 
been passed through an ideal band-pass filter with re- 
sponse limited to frequencies Wx < j < W2 and the 
estimates must be based on the resulting band-limited 
output process yB(t). For any value of ß, only values of 
R{t; ß) within a finite interval tx < t < t2 depend on ß. 
tx and t2 do not depend on ß and, for convenience, we take 

k = 
Mx 

2{W2 - Wx) 
k = 

M2 

2(W2 - Wx) 

where Mx and M2 are integers. This assumption is valid 
if R(t; ß) has a constant shape outside of or is only observ- 
able within some fixed time interval. Finally, R(t; ß) 
obeys certain general regularity conditions. 

Introduced the normalization 

z{t) = yB(t) VW2 - Wx 

On the basis of the above assumptions the band-limited 
process z(t) can be represented by the 

2& - tx)(W2 - Wx) + 1 

samples z(nAt) where At = %{W2 — Wx) and n = Mx, 
Mx -f 1, • • • , M2. The z(nAt) are Gaussian and to a good 
approximation are independent with 

varz(nA/) = R{nAt;ß) (45) 

Thus the samples z{nAt) are duals of the real and imagi- 
nary parts of the Fourier coefficients of Section III. 
The logarithm of the likelihood of the set of samples is 
approximately 

r(z; fi) - - i t [log &SM* ß) + £^\   (46) 

var 

This has a form almost identical with (13) and the maxi- 
mum likelihood estimation of ß is analogous to the dis- 
cussion of the preceding sections. The result corresponding 
to (19) is 

*mfa-™C\gggL]*Y <«> 
Thus, the wider the observable bandwidth (W2 — Wx)} 

the smaller the variance of the estimate. 

X. AN APPLICATION TO RADAR ASTRONOMY 

An interesting example of a possible application of 
these results is in radar astronomy [24], [25]. When a 
CW signal is transmitted, the energy reflected from the 
moon or a planet can be considered as a Gaussian random 
process. The radial velocity of the body can be inferred 
from the Doppler shift and the rotation rate from the 
spectral width (frequency scale factor), so the analyses 
of Sections VI and VII apply. The effect of thermal 
noise at the receiver is included by adding its constant 
level to the power spectrum of the received energy. 

On the other hand, Section IX applies to the case 
where a narrow pulse of bandwidth (W2 — Wx) is re- 
flected from a target having a large delay spread. If the 
target consists of many point scatterers randomly and 
independently distributed with a spatial density pro- 
portional to y/R{t; ß), then the received signal approxi- 
mates a Gaussian nonstationary band-limited white 
noise process with time-varying power level R(t; ß). The 
target characteristics can be estimated as the parameters 
of R(t; ß)} the range being analogous to the center fre- 
quency and the target depth to the frequency scale 
factor which were discussed in Sections VI and VII. 
Another parameter of significance is the rapidity with 
which the power level falls off with range, since it provides 
a measure of the surface roughness. It should be noted 
that the regularity assumptions may not be satisfied in 
some cases because of the sharp leading edge of the 
return signal. 
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